Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
Source: https://leetcode.com/problems/3sum/
Programming Language: C#
Run Time Complexity: O(n^2)
After sorting the input array, 3 three pointers are initialized.
The first pointer goes from index 0 to index end-2.
The 2nd pointers goes from the current element(1st pointer) index + 1
The 3rd pointers goes from the last element in a reverse order.
Two iterations:
1. 1st pointer from 0 to index end-2
2. while (2nd<3rd)
Conditions:
1. if (array[1st]+array[2nd]+array[3rd]==0), get one result
2. if (array[1st]+array[2nd]+array[3rd]>0), 3rd -1
3. if (array[1st]+array[2nd]+array[3rd]<0), 2nd +1
Solution
public IList<IList<int>> ThreeSum(int[] num) { IList<IList<int>> Resultset3Sum = new List<IList<int>>(); if ((num == null) || (num.Length < 3)) return Resultset3Sum; // sort array List<int> numList = num.ToList(); numList.Sort(); for (int i = 0; i < numList.Count - 2; i++) { // //avoid duplicate solutions if (i == 0 || numList[i] > numList[i - 1]) { int start = i + 1; int end = numList.Count - 1; while (start < end) { //case 1 if (numList[i] + numList[start] + numList[end] == 0) { List<int> temp = new List<int>(); temp.Add(numList[i]); temp.Add(numList[start]); temp.Add(numList[end]); Resultset3Sum.Add(temp); start++; end--; //avoid duplicate solutions while (start < end && numList[end] == numList[end + 1]) end--; while (start < end && numList[start] == numList[start - 1]) start++; } //case 2 else if (numList[i] + numList[start] + numList[end] < 0) { start++; } //case 3 else { end--; } } } } return Resultset3Sum; }
No comments:
Post a Comment